
Presentation to: Thermal Team

The importance of humidity measurement

Mark Stevens
Humidity Group

I'm going to talk about

- Why we measure humidity
- How humidity is measured
- Our standards
- ◆ A few other interesting things

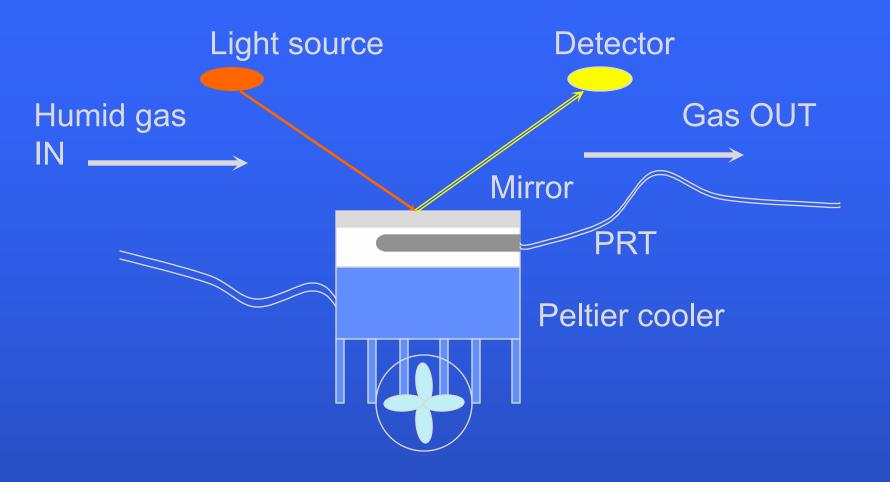
Definitions:


• relative humidity (in percent) $\psi = \frac{100 p}{p_s}$

 $(p, is vapour pressure, p_s is saturation vapour pressure)$

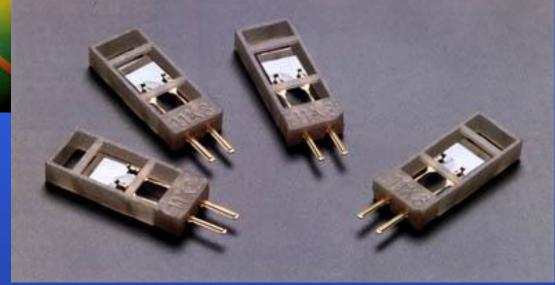
- dew point the temperature at which condensation forms on cooling a gas (frost point where the condensate is ice)
- mole fraction (of water vapour) ratio of the number of moles of water vapour to the total amount of substance present.

- Humidity affects the thermal, electrical, optical and transport properties of gases
- The moisture content of liquids and solid materials are influenced by humidity of the surroundings
- Corrosion, microbial growth, deformation of materials, and more ...



Sensing principles for humidity measurement

- dimensional change of materials
- condensation (detected optically, electrically, or by change of resonant frequency)
 - gravimetric determination spectrometry
- rate of evaporative coolingthermal conductivity
 - adiabatic expansion cooling opneumatic bridge
- acoustical transmission of airelectrical impedance
 - rate of electrolysis of phosphorus pentoxide
- transmission of optical fibre
 optical refractive index
 - heat of sorption by a desiccant
 - colour change of chemicals ...and others...


Optical Dew-point Hygrometer

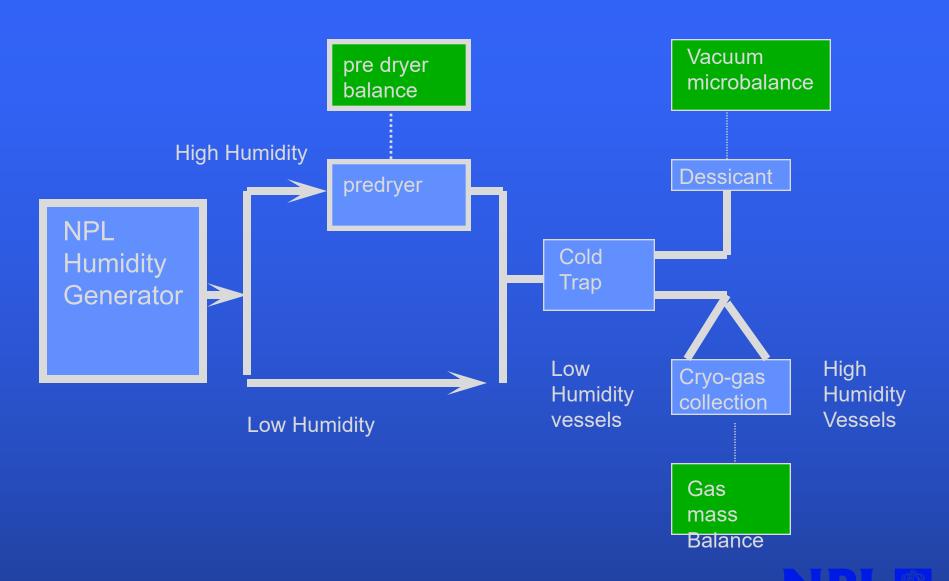
Humidity impedance sensors

Source: Vaisala

Industrial significance of humidity

Applications include:

- semiconductor manufacture,
- food and pharmaceutical industries,
- power generation,
- weather forecasting, climate studies,
- air conditioning, conservation of historic artefacts
- packaging of goods, goods sold by weight, and many others.
- Industrial interests span perhaps 9 or 10 orders of magnitude.
- Routine relative humidity measurements may have uncertainty of ±2% to ±5% of reading


National standards for humidity

- We hold standards for
 - dew-point temperature (including frost point) using dew-point generators
 - relative humidity
 using dew-point generator or transfer standards
 with temperature-controlled chamber
 - mixing ratio
 using gravimetric hygrometer

NPL Primary Gravimetric Hygrometer

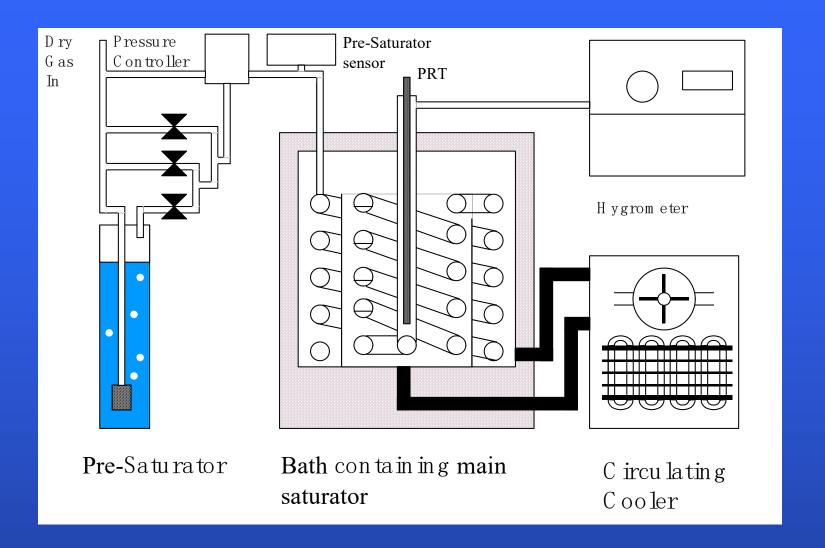
Block diagram of the PGH

Gravimetric hygrometer

Mixing ratios 0.007 to 170 gram/kilogram)
 (Equivalent dew-point range -60 °C to +60 °C at atmospheric pressure)

- Uncertainty
 ±0.015% to ±1.3% of mixing ratio
 (dew-point equivalent uncertainty
 ±0.003 °C to 0.84 °C)
- ◆ Gas sampling rate up to 1 litre/minute

THE NPL HUMIDITY GENERATOR



HUMIDITY GENERATORS AT THE NATIONAL PHYSICAL LABORATORY

- The humidity generators at NPL are traceable to the base unit of temperature
 - Standard Humidity Generator (SHG)
 - Range -75 °C to +90 °C
 - 2 % to 98 % relative humidity at -20 to 82 °C
 - High Dew Point generator (HDG)
 - Range -3 °C to +90 °C (or higher (not yet accredited))
 - 20 % to 98 % relative humidity at 20 °C to 90 °C
 - high flow rates
 - New Low Frost point generator (under evaluation)
 - Range (at least) -90 °C to +20 °C

FROST POINT SATURATOR

Interesting questions we have been asked

- "How can I stop condensation dripping from the ceiling of my Turkish bath?"
- "Can you advise on humidity control for my cello?"
- "I have 2000 tonnes of potatoes to keep at optimum humidity – what should I do?"
- "Condensation in our abattoir keeps dripping on the carcasses and contaminating them – what can we do?"
- "Why is humidity relevant in cricket?"

Cross-industrial significance of humidity (1)

- Drying processes:
 - drying optimised by identifying the end point, when moisture ceases to be driven off
 - dramatic energy savings
 - savings in processing exhaust emissions
 - needs techniques that are robust against high temperatures and reactive gases - a difficult challenge for electronic sensors.

Cross-industrial significance of humidity (2)

- Environmental testing.
 - Many (prototype) manufactured items are tested
 - Range of humidities and temperatures, sometimes with other conditions, such as vibration
 - Demonstrate that the product can withstand certain extreme conditions without failing
 - "Stress screening" environmental tests test a product to destruction and find the modes of failure
 - Water vapour penetrates cracks, and accelerates the appearance of flaws
 - Debate about which humidity sensors to use

Trace moisture in semiconductor manufacture

- Water vapour is a chief cause of failures in electronics manufacture.
- High dielectric constant of water relative to other substances
- Process molecules used in low concentrations, but water vapour abundant
- Process gases need <10 ppb of water vapour</p>
- Even lower concentrations in the future, to produce larger wafers with smaller features
- "Facility isolation" may be the way ahead